TAVT-135, a novel chloride ion transporter for the pan-genotypic treatment of cystic fibrosis: electrophysiological and mucus-hydration properties

Roger Ilagan¹, Martina Gentzsch², József Maléth^{3,4}, Nancy L. Quinney², Viktória Szabó³, Florina Zákány⁵, Orsolya Basa-Dénes⁶, László Molnár⁶, Istvan M. Mandity^{6,7}

¹TAVANTA Therapeutics, King of Prussia, PA, USA; ²Marsico Lung Institute and Department of Pediatric Pulmonology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; ³ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary; ⁴EpiPharma, Szeged, Hungary; ⁵Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; ⁶TAVANTA Therapeutics, Budapest, Hungary; ⁷Lendület Artificial Transporter Research Group, Research Center for Natural Sciences, Budapest, Hungary

- The treatment of cystic fibrosis (CF) has been transformed by the introduction of modulators of the CF transmembrane conductance regulator (CFTR)^{1,2}
- Approximately 10% of patients have ineligible genotypes,³ while others may experience inadequate response or intolerance to CFTR modulators⁴
- TAVT-135, a novel small molecule-peptide conjugate composed of a chloride ion-binding moiety and a cellpenetrating peptide (CPP; Figure 1), is being investigated as a potential treatment for CF, regardless of CFTR mutational status
- We performed a series of *in vitro* studies to characterize the electrophysiological and mucus-hydration properties of TAVT-135

Figure 1. Working model of TAVT-135 mechanism of action a. CF airway

b. CF airway with TAVT-135

Methods

Intracellular to extracellular chloride ion transport

 The effects of TAVT-135 and its separate functional components on intra- to extracellular chloride ion transport were evaluated in *Xenopus laevis* oocytes using a two-electrode voltage-clamp technique in the presence of TAVT-135 (10 μM) or negative controls – the CPP alone (10 μM) and the chloride-binding moiety alone (10 μM)

Electrophysiological correlates of chloride ions

- Anion efflux was evaluated using a modified Ussing chamber system with human bronchial epithelial (HBE) cells harboring mutations for non-functional CFTR (non-functional genotype with W1282X/R1162X mutation)
- Following amiloride-induced inhibition of the epithelial sodium channel, the impact of TAVT-135 exposure (0.01–50 μM) on short-circuit current (I_{sc}) and transepithelial electrical resistance (TEER) was determined

Mucus hydration

- Mucus hydration in HBE cells with CFTR mutations (homozygous for ΔF508) was assessed by measuring the height of the airway surface liquid (ASL) and periciliary layer (PCL)
- Following chronic exposure to TAVT-135 (1, 10, and 100 μM) for 48 hours, ASL and PCL were visualized with apical application of FITC-dextran
- Heights (μm) were determined using Z-stack images from confocal microscopy

Results

Intracellular to extracellular chloride ion transport

- In X. laevis oocytes, TAVT-135 induced rapid chloride ion efflux, demonstrating chloride ion transport from the intracellular to the extracellular space (Figure 2a)
- In comparison, CPP alone had minimal activity on chloride current (Figure 2a), and the unconjugated chloride-binding component did not have any detectable effect on chloride current (Figure 2b)

Mucus hydration

Following 48 hours' incubation of CFTR-mutated HBE cells with TAVT-135 (10 and 100 μM), statistically significant increases in ASL and PCL height were observed in comparison with the' untreated control cells (Figure 4)

Figure 4. Effect of TAVT-135 on ASL and PCL height in CFTR-mutated HBE cells

a. Representative Images

Negative control (non-treated CFBE41o- cells)

CFBE410- cells treated with 10 μM TAVT-135

CFBE410- cells treated with 1 μM TAVT-135

Poster numbe

CFBE410- cells treated with 100 μM TAVT-135

Electrophysiological correlates of chloride ions

- In HBE cells, there was a significant, dose-dependent increase in I_{sc} following acute application of TAVT-135
 ≥1 µM, demonstrating anion efflux (Figures 3a, b)
- Within 5 min of acute exposure, TEER was maintained at TAVT-135 concentrations ≤1 μM and decreased at concentrations ≥10 μM (Figure 3c)

Green: Fluorescein isothiocyanate-dextran (4 kDa) Blue: Hoechst 33342 Objective: 20x

ASL, airway surface liquid; CFTR, cystic fibrosis transmembrane conductance regulator; HBE, human bronchial epithelial; PCL, periciliary layer **p<0.01; ***p<0.001 Black dots are individual samples; bars are mean ± standard error of the mean (SEM)

Conclusions

 In this series of *in vitro* experiments, TAVT-135 rapidly induced intracellular chloride transport across plasma membranes without negatively impacting the epithelial barrier

Black dots are individual measurements; bars are mean \pm standard error of the mean (SEM)

- TAVT-135 also increased ASL and PCL height, which may suggest a mucociliary clearance effect in vivo
- These data support the potential for TAVT-135 to address significant unmet needs in patients with CF, including those who are ineligible for or do not respond to CFTR modulators
- Additional studies into this novel artificial chloride ion transporter are ongoing

References

. Despotes KA, Donaldson SH. Curr Opin Pharmacol 2022;65:102239.

2. Regard L et al. Cells 2022;11:1769.

- 3. Fajac I, Sermet I. Cells 2021;10:2793.
- 4. Guimbellot J et al. Pediatr Pulmonol 2017;52(Suppl 48):S4–S14.

Medical writing support was provided by Nicky French and Julia Donnelly of Piper Medical Communications, funded by Tavanta Therapeutics.

Disclosures Funding for this research was provided by Tavanta Therapeutics.

European Cystic Fibrosis Society (ECFS) – Basic Science Conference, 29 March – 1 April, 2023