

Scalable continuous flow technology for the development of pharmaceutical nanoformulations

T. Solymosi¹, R. Angi¹, T. Jordán¹, B. Szabóné¹, B. Kárpáti¹, Zs. Ötvös¹, L. Molnár¹, H. Glavinas¹, G. Filipcsei¹ ¹NanGenex Inc, Member of the DRGT Group; Budapest, 1138, Madarasz Viktor str 47-49; website: www.drgtco.com

Abstract

In the past decades flow chemistry became an important and rapidly advancing field of organic synthesis. However, it has been only introduced and was translated into the daily practice during the past years to prepare nanostructured particles. Decreasing the particle size down to the submicron range allows us to create nanoparticles with unique and novel material characteristics.

As a non-traditional approach, we have developed a continuous flow method for the production of nanoparticles in order to tailor the physicochemical properties of poorly soluble active pharmaceutical ingredients. The flow technology enabled us to positively impact the following physicochemical properties of the formulated drug: apparent solubility, drug dissolution profile, passive permeability and bioavailability. In this paper we will discuss a flow chemistry-based nanoparticle production approach using Fulvestrant as model drug.

The compound has negligible oral bioavailability due to poor solubility in aqueous media. Therefore, Fulvestrant is administered as a painful oil based intramuscular injection hindered by several adverse effects. We have prepared Fulvestrant nanoparticles using the controlled flow-precipitation method developed. The composition of the nanostructured particles was identified by high throughput screening. Downhill simplex method was used for flow parameter optimization. With the optimal parameter set, the nanoparticles were produced in small scale. The flow production process was scaled up and optimized to laboratory scale to meet the material need of animal studies. In-vitro characterization predicted complete absorption from the GI tract. The in-vitro results translated to excellent *in-vivo* performance. Rat PK studies showed that Fulvestrant formerly known as non-bioavailable was made bioavailable by creating nanostructured particles.

In the long term, we believe that the flow-technology could provide a suitable solution for the pharmaceutical industry to develop and prepare novel drugs with improved biological performance.

Production process

	Prediction $ + N - N \\ + + + + + + + + + + + + + + + + + +$	<section-header></section-header>	<section-header></section-header>			Solution 1	rument	 ✓ Continuous flow production process in proprietary instrument ✓ The produced colloid is forwarded to solid formulation
								 ✓ For solid formulation regular freeze-drying or spray-drying can be applied
Primary objective(s)	<i>In silico</i> analysis	Preformula identification	Flow optimization (Lab scale production)	Lab scale production (Flow optimization)	Pilot plant scale production			
Solid ormulation	n/a	Lyophilization	Lyophilization (Spray drying)	Spray drying (Lyophilization)	Spray drying			✓ Solid dosage forms (PiB, tablet, capsule, etc) can be
Capabilities	Prediction of viable formulations	2000+ formulae / day	Robotized flow optimization	70+ g / day production capacity	2+ kg / day production capacity			developed

Optimization and scale-up of the Fulvestrant formula

HT screening identified a composition that wetted and dispersed instantaneously							
ean	266 nm (polydisperse)						
ор	0 (*10 ⁻⁶ cm/s)						

Structure of Fulvestrant		Optimization		Process intensification					
	*				Solvent flow rate	Antisolvent flow rate	Particle size of the redispersed colloid		
Parameter set	P (*10 ⁻⁶ cm/s)						d ₅₀ (nm)	d90 (nm)	
					1 ml/min	4 ml/min	138	304	
#1	0		 ✓ Flow optimization based on simplex method ✓ Target parameter: PAMPA permeability ✓ Parameters had significant effect on the permeability of the formula 		2 ml/min	8 ml/min	171	357	
#2	0.03				4 ml/min	16 ml/min	181	294	
#3	0.22	600 450 T			8 ml/min	32 ml/min	179	274	
#4	0.19	300							
#5	0.51					Particle size of the as-synthetised colloid prepared with 4:16 flow rat			
#6	0					20°C	25°C	30°C	
#7	0				d ₅₀ (nm)	390	426	422	
#7	0	0.0 0.5 1.0 0.5 0.0 -0.5 -1.0 0.5			d ₉₀ (nm)	543	937	579	
#8	0.14	1.5 1.5			PDI	0.067	0.224	0.061	
π.σ		optimization	d _{mean} P _{app}	186 nm (monodisperse) 0.52 (*10 ⁻⁶ cm/s)	✓ The flow process was scaled-up to laboratory scale ✓ NanoActive instrument was used for production				
vitro characte	rization of the formula					In vivo characte	rization of the formula		
rticle size meas	surement	Comparative PAMPA mea	surement	GI tract simulation		Animal PK studies sho	wed that Fulvestrant formerly know bioavailable by creating a nanoforr	n as non-bioavailable was made nulation	
		1 Reference		100000 H ₂ O Stomach I	Intestine		PK paramete	er Value	
		0,8 – Fulvestrant-Super API		80000			$t_{1/2}(h)$		
				sity		60 - 1	CL (ml/kg/min) (E	.st) 346.0	
		는 동 0,6 -					K _{el} (1/11)	0.44	

✓ Narrow, monodisperse size distribution ✓ Mean particle size < 200 nm</p>

10

✓ The formula was stable throughout the GI tract in both fasted and fed states

✓ No issues were expected during PK studies

V_d (ml/kg) (Est)

46380.1

Oral absorption was tested in a rat model at 2.5 mg/kg

References

Conclusions

60000

- 1. Instrument and process for nanoparticles production in continuous flow mode, WO2009/133418
- 2. Complexes of Fulvestrant and its derivatives, process for the preparation thereof and pharmaceutical compositions containing them, HU P1300646

With Fulvestrant we have demonstrated the capabilities of the flow technology developed. The production process was optimized and scaled-up and a commercially viable dosage form was prepared. Ultimately, an orally nonbioavailable drug achieved complete absorption from the GI tract in multiple animal studies in different species.

concel

Plasma